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Abstract 

Superhydrophobic surfaces are usually characterized by a high apparent contact angle of 

water drops in air. Here we analyze the inverse situation: Rather than focusing on water 

repellency in air we measure the attractive interaction of air bubbles and superhydrophobic 

surfaces in water. Forces were measured between microbubbles with radii R of 40-90 µm 

attached to an atomic force microscope cantilever and submerged superhydrophobic 

surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of 

capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces 

we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top 

faces and decorated micropillars. Depending on the specific structure of the superhydro-

phobic surfaces and the presence and amount of entrapped air different interactions were 

observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: 

Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, 

bubbles jumped onto the surface and fully merged with the entrapped air. On nano-

filaments and micropillar arrays we observed in addition the formation of sessile bubbles 

with finite contact angles below 90° or the attachment of bubbles, which retained their 

spherical shape.  
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Introduction 

Wetting of a surface by a liquid is determined by the chemical composition and the 

three-dimensional topography on the nano- and micrometer scale. One example for a 

surface with special wetting properties are superhydrophobic surfaces, which strongly repel 

water. This repellency is typically quantified by a high apparent contact angle (Θapp > 150°) 

and a low roll-off angle for droplets (α < 5-10°). High contact angles can be reached if the 

surface topography stabilizes a layer of air underneath the water, even if the roll-off angle 

exceeds 10°. This state is called the Cassie-state.1 When no air is entrapped and the whole 

surface of the solid substrate is in direct contact with water the surface is said to be in the 

Wenzel state.2 Superhydrophobic surfaces only show water repellent properties when they 

are in the Cassie state. Maintaining the Cassie state is therefore essential. 

For many applications, e.g. for drag reduction3, 4, 5, 6, 7, 8 in capillaries or for gas exchange 

membranes,9 superhydrophobic surfaces are submerged. On superhydrophobic surfaces in 

the Cassie state drag is reduced because the hydrodynamic boundary condition changes. A 

large part of solid-liquid interface with its no-slip boundary condition is replaced by 

water-air interface; a pure water-air interface cannot support shear. The effect is similar to 

the Leidenfrost effect of submerged hot surfaces 10 but should be distinguished from the 

use of dispersed air bubbles to reduce hydrodynamic drag macroscopically (e.g.11). In the 

latter case dispersed bubbles reduce hydrodynamic drag of the liquid by bubble splitting, 

bubble deformability and providing compressibility to the liquid. In the first case drag 

reduction is caused by an effective slip.  

In submerged samples, the air in the superhydrophobic surface is no longer connected to 

the atmosphere, as is the case for sessile drops. Then the lifetime of the Cassie state can be 

limited by the hydrostatic pressure and dissolution of gas in water.12, 13, 14, 15 As the partial 

pressure of entrapped gas increases along with the hydrostatic pressure, gas is dissolved in 

water according to Henry’s law. The resulting decrease in gas pressure destabilizes the 

Cassie state. Changes in the degree of saturation of water with gas could lead to a 

depletion of gas from the entrapped air, which further destabilizes the Cassie state. Such a 

change can for example be caused by a temporary decrease of temperature. Therefore, for 

longevity air needs to be replenished.16, 17, 18, 19 Replenishing air has the additional 

advantage that temporary decreases of the thickness of the air layer for example caused by 

turbulent flow may be repaired.  
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Bubbles dispersed in a liquid flowing over a submerged superhydrophobic surface may be 

used for replenishing air and to maintain the Cassie state. A prerequisite is, however, that 

bubbles merge with the entrapped air layer. The key for these processes is a favorable 

interaction of the bubble with a superhydrophobic surface. This interaction has been 

studied by imaging rising bubbles when they get into contact with superhydrophobic 

surfaces.20, 21 Depending on the specific wetting properties of the sample, bursting or 

pinning has been observed. Furthermore, Wang et al. measured a strong adhesive force 

when removing macroscopic air bubbles from natural and biomimetic rose petals.22  

Here we describe direct force measurements for the interaction between bubbles with 

submerged superhydrophobic surfaces in the Cassie state. Force measurement between air 

bubbles and solid surfaces have been conducted using different techniques such as the 

AFM (atomic force microscope) colloidal probe technique23, 24, 25, 26 and the surface forces 

apparatus (SFA).27 These techniques generally require smooth and transparent solid 

surfaces or particles. Recently, an AFM based technique for direct force measurements 

between bubbles28, 29, 30 and between bubbles and solid surfaces31, 32, 33, 34 has been 

developed. In this technique, a bubble is anchored on a hydrophobic region on a tipless 

AFM cantilever. Almost any type of solid/liquid surface and bubble can be tested without 

the limitation of surface requirement in solid colloidal probe method or SFA measurement. 

Although AFM itself cannot directly measure the absolute separation between deformable 

bubbles and surfaces, a theoretical model based on Reynolds lubrication theory and an 

augmented Young-Laplace equation has been applied to successfully interpret the 

measured force curves.34 By coupling the AFM bubble probe technique and reflection 

interference contrast microscopy (RICM), the interaction force and the spatiotemporal 

evolution of the thin water film between a bubble in water and mica surfaces was directly 

measured.34 Despite this progress, to our knowledge no report is available about direct 

force measurements between bubbles and submerged superhydrophobic surfaces. 

Materials and Methods 

All experiments were carried out at room temperature. The following chemicals were used: 

Tetraethylorthosilicate (TEOS, 98%, Sigma-Aldrich, Germany), 1H,1H,2H,2H-perfluorooctyl-

trichlorosilane (PFOTS, 97%, Sigma-Aldrich, Germany), trichloromethylsilane (TCMS, 99%, 

Sigma-Aldrich, Germany), 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFDTS, 98%, Alfa 

Aesar, Germany), hexane (99,99%, Fisher Chemical, Germany), aqueous ammonia solution 
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(28 wt.%, VWR International and Normapur, Germany), and photoresist SU-8 (Microchem, 

Germany). Reagents were used as received. Paraffin candles were obtained from the local 

supermarket. Polished silicon wafers were obtained from Si-Mat (Germany). Glass slides of 

24 × 60 mm2 and 170±5 µm thickness were obtained from Carl Roth (Germany).  

Superhydrophobic surfaces 

Four types of superhydrophobic surfaces were prepared and analyzed: (1) Soot-templated 

superamphiphobic surfaces, (2) superamphiphobic surfaces consisting of nanofilaments, (3) 

arrays of cylindrical micropillars, and (4) arrays of micropillars decorated with microspheres 

at the top faces. Apparent receding contact angles and roll-off angles for water are given in 

table 1. We report apparent receding contact angles because the receding rather than the 

advancing contact angle determines the mobility of sliding drops.35  

 Θr
app Roll-off 

angle 

Soot-templated 
600°C 

>158° ± 4° < 1° 

Soot-templated 
1150°C 

155° ± 5° 5-8° 

Nanofilaments 158° ± 4° < 1° 

Micropillars 140° ± 4° 15° 

Decorated 
micropillars 

142° ± 2° 7° 

Table 1. Apparent receding contact angle (Θr
app) measured in the sessile drop configuration 

and roll-off angle for a water drop of 5 µL for the differently prepared superhydrophobic 

surfaces. 

(1) Soot-templated surfaces (Fig. 1A,B) were prepared as described in ref. 36. Silicon wafers 

of 1.5×1.5 cm2 size were cleaned by supersonication in toluene, acetone, and ethanol for 5 

min each. The wafers were dried at 0.25 bar and 40°C in an oven. To reduce delamination a 

prelayer of silica was deposited on the wafers by chemical vapor deposition (CVD). 

Therefore the cleaned wafers were activated by oxygen plasma (300 W, 2 min) and 

subsequently transferred to a desiccators. The desiccator contained two 20 mL vials, one 

carrying 3 mL TEOS and the other 3 mL ammonium hydroxide solution (28 wt.%). After 24 h 



 
 

5 
 

of CVD the wafers were exposed to candle soot for 30 s. The collected candle soot served 

as template and was coated with a silica shell. Therefore, the samples were placed again in 

a desiccator containing 2 vials of 3 mL TEOS and 3 mL ammonium hydroxide solution (28 

wt.%) for 24 h. After silica coating the candle soot template was combusted in air at 600°C 

(Fig. 1A), 900°C for 3.5 h or at 1150 °C (Fig. 1B) for 4 h (Oven: VKM-22, Linn High Therm 

GmbH, Germany). After combustion the samples were hydrophobized by placing them in a 

desiccator together with a 20 mL vial containing 100 μL PFOTS. The desiccator was 

evacuated to 25 mbar and the reaction proceeded for 3 h at room temperature. Finally, 

unreacted fluorosilane was removed from the samples by placing the samples in a vacuum 

chamber (100 mbar at 80 °C for 3 h). These surfaces even show superamphiphobic 

properties and repel oils and surfactant solutions.36 

(2) Silicone Nanofilaments (Fig. 1C) were prepared modifying the method described by 

Zhang and Seeger.37 120 µL of TCMS was added to a reaction chamber containing 50 mL of 

water-saturated hexane. The solution was stirred for 60 s. Afterwards glass slides were 

immersed in the solution and the reaction chamber was sealed. After 3 days the coated 

glass slides were rinsed with hexane and dried under a nitrogen stream. The coated glass 

slides were activated in an oxygen plasma (Femto, Diener Electronic, 25 W, 2 min) at an 

oxygen flow rate of 7 sccm (standard cubic centimeters per minute, cm3/min). A volume of 

25 µL of PFDTS was mixed with 50 mL of hexane. The activated samples were immersed in 

the solution for 20 min. Afterwards the fluorinated samples were rinsed with hexane and 

dried under a nitrogen stream. The silicon nanofilament layers were 4 µm thick.  

(3) Arrays of micropillars (Fig. 1D). Square arrays of round flat-top micropillars of 10 μm 

height, a center-to-center distance of 10 µm and a diameter of 5 µm were fabricated on 

170 μm thick glass slides by photolithography of the negative photoresist SU-8 (Microchem) 

as described in ref. 38. Pillars were coated with a silica shell of ≈70 nm by a Stöber reaction 

to improve the mechanical stability. Therefore, after activation of the samples under O2 

plasma (30 s, 150 W, flow rate of 7 sccm) they were immersed in a solution of tetraethoxy-

silane (TES, 1.8 mL) and ammonium hydroxide (28% in water, 4.2 mL) in ethanol (50 mL) for 

2.3 h. In a final step, the micropillars were rinsed with ethanol and dried in a N2 stream. The 

silicon oxide was hydrophobized in an atmosphere of PFOTS for 3 h, analogous to the 

procedure described to hydrophobize the soot-templated surfaces. For the pillar arrays we 

estimated 39 the impalement pressure to be 5 kPa. For the soot-templated surfaces and the 

nanofilaments we expect the impalement pressure to be higher due to the smaller spacing 

between asperities.  
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(4) Decorated micropillars (Fig. 1E). Colloidal monolayers of polystyrene particles were 

deposited on the micropillar arrays by self-assembly at the air-water interface of a 

Langmuir trough (242 cm²) using Milli-Q water as a sub-phase.40 The particles were 

synthesized by soap-free emulsion polymerization of styrene yielding monodisperse 

spherical particles of 1.4 µm diameter. The substrates were immersed into the sub-phase 

and a colloidal dispersion in ethanol was added dropwise to the water/air interface. After 

15 min, the monolayer was compressed at 10 mm/min before lowering the water level. In 

order to stabilize the system, the particle-decorated pillars were covered again with a ≈20 

nm thick silica shell by CVD of TES catalyzed by ammonia. They were finally fluorinated 

following the procedure to hydrophobize the micropillar arrays. 

 

 

 

 

 

 

 

 

Figure 1: Scanning electron microscope (SEM) images of 

soot-templated surfaces annealed at 600°C (A) and 1150°C (B), 

nanofilament surfaces (C), arrays of micropillars (D), and arrays of 

micropillars decorated with microspheres at the top faces (E). 

Samples were sputter coated with 6-12 nm Pt to enhance image 

quality (BalTec MED 020 Modular High Vacuum Coating System, 

Argon at 2×10-5 bar, 60 mA). Images were taken with a LEO 1530 

Gemini, Zeiss SEM at a gun voltage of 0.7-1.0 kV (Inlens detector) 

or obtained at 1.5 kV (Everhart-Thornley detector). 
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AFM bubble probe setup 

An AFM bubble probe technique was applied to directly measure forces between air 

bubbles and superhydrophobic surfaces (Fig. 2A). The glass disk of the fluid cell was slightly 

hydrophobized by immersion in a toluene solution containing 10 mM octadecyltrichloro-

silane (OTS) for 10 s to gain a water contact angle of 30° - 50°. The superhydrophobic 

sample was placed into solution after bubble generation. A customized tipless rectangular 

silicon AFM cantilever (400×70×2 μm3) with a circular patch of gold (diameter 65 μm, 

thickness 30 nm) was used for anchoring the air bubble. The gold patch on the cantilever 

was hydrophobized by immersing the cantilever in 10 mM 1-decanethiol in ethanol solution 

overnight to gain stronger hydrophobicity than the glass disk of the fluid cell, which 

facilitated easy bubble pick-up. A bubble probe was created by bringing down the 

hydrophobized tipless cantilever to contact with an air bubble (radius 40 - 90 μm) on the 

bottom glass. Then the cantilever was carefully elevated to detach the bubble from the 

glass disk. Afterwards, the bubble probe was moved above the substrate surface and force 

measurements were conducted by driving the bubble close to and away from the surface 

by a piezo actuator at defined nominal velocity. The Z piezo displacement, cantilever 

deflection and force were recorded by the AFM software. Calibration of the cantilever’s 

spring constant was conducted using the method of Hutter and Bechhoefer before bubble 

loading.41 The volume of the measuring cell was 3-5 mL and the submerging depth of the 

air bubble (attached to the cantilever) was 0.5-1 mm. More details about the set up are 

described in refs. 33, 34.  

  

Figure 2. Schematic experimental AFM setup (A) and a modified Integrated Thin Film 

Drainage Apparatus (B). With these two setups the interaction of superhydrophobic 

surfaces and microscopic (A) or macroscopic (B) air bubbles were measured. The red line in 

(A) indicates the laser of the optical lever detection system. 



 
 

8 
 

Theoretical modelling of AFM data 

A theoretical model based on Reynolds lubrication theory and the Young-Laplace equation 

was used to analyze the AFM experiment results. The deformation of the air bubble in 

response to the Laplace pressure, hydrodynamic pressure, and the disjoining pressure was 

described by the Young-Laplace equation:42, 43  

0

2
2

hr P
r r r R
γ γ∂ ∂  = − −∏ ∂ ∂ 

             (1) 

Here, γ is the interfacial tension, r is the radial coordinate, h(r,t) is the film thickness, and R0 

is the radius of the air bubble. P(r,t) is the excess hydrodynamic pressure in the liquid film 

(between air bubble and substrate) relative to the bulk liquid. P is the disjoining pressure 

arising from surface forces such as van der Waals, electrical double layer interactions. t is 

time. Reynolds lubrication theory was applied to describe the drainage process of the water 

film between air bubble and the substrate surface: 

31
12

h Prh
t r r rµ

∂ ∂ ∂ =  ∂ ∂ ∂ 
              (2) 

Here, μ is the viscosity of the aqueous solution. Immobile boundary conditions at the 

air-water and solid-water interfaces were assumed based on recent reports.31, 32, 33, 34, 44 The 

overall interaction force between an air bubble and a solid surface F(t) was calculated by 

integrating P and P based on an approach similar to the Derjaguin approximation:43 

 [ ]
0

( ) 2 ( , ) ( , )F t P r t r t rdrπ
∞

= + P∫              (3) 

Macroscopic force measurements 

To study the bubble-superhydrophobic surface interaction also at a macroscopic length and 

faster time scale we carried out experiments with a modified version of Integrated Thin 

Film Drainage Apparatus (ITFDA)45. The ITFDA was used to measure the interaction of an air 

bubble with radius of 1.2 mm and a superhydrophobic surface in water. The bubble was 

generated using a gastight microsyringe at one end of a glass capillary of 0.74 ± 0.05 mm 

inner radius. The substrate of the superhydrophobic surface was clamped at the free end of 

a bimorph cantilever (Fuji Ceramics Corp., 20×3×0.3 mm3, capacitance of 20 nF). The 

bimorph is made of two slabs of piezoelectric lead zirconate titanate material sandwiched 
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together and used as a bending type force transducer. It was enclosed in a fluorinated 

ethylene propylene sheath with the other end mounted in a stainless steel measurement 

chamber which has a glass window for side view observation. When a force is exerted on 

the substrate it causes a deformation of the bimorph and generates an electrical charge, 

which was measured by a high impedance charge amplifier. The measured charge can be 

directly calibrated by adding known weights at the location of the testing surfaces. The 

sensitivity of the force measurement was 0.1 µN. The glass capillary with the air bubble 

attached was moved using a motorized actuator (THORLABS Z825B). The vertical 

movements of the glass capillary with the bubble were independently measured by a 

displacement sensor with an accuracy of 5 µm and observed with a CCD camera (Basler 

scA-1400, 17 fps). A custom-built LabView program was used for data acquisition and 

control of the experiments. In this work, the initial distance between the bubble and the 

surface was set at 400 µm with a total displacement of the glass capillary of 600 µm. 

Approach and retract velocity were fixed at 1 mm/s. The volume of the measuring cell was 

70 mL and the submerging depth of the air bubble was 14 mm.  

Results and discussion 

Interaction of small air bubbles with soot-templated surfaces 

The most stable and thick Cassie state is obtained with soot-templated surfaces. Therefore, 

most experiments were carried out with those surfaces. A low and defined ionic strength of 

1 mM salt was chosen. When the bubble approached the soot-templated surface with a 

relatively slow velocity of 1 µm/s it was repelled until a critical force of ≈1 nN was reached 

(Fig. 3 A black line). Then video microscopy showed that the bubble seemed to disappear, 

similar to the bursting process reported by Wang et al.22 In reality, the bubble merged with 

the air layer trapped in the soot-templated surface. This process was so fast that it could 

not be resolved with a normal camera or by eye. Thus, the submerged soot-templated 

surface shows superaerophilic properties in water.  
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Figure 3. Force-versus-piezo displacement for the interaction of an air bubble attached to 

an AFM cantilever and a soot-templated superamphiphobic surface (annealing temperature 

600°C) in 1 mM NaCl (A) and in 500 mM NaCl (B) aqueous electrolyte. Approaching velocity: 

1 µm/s. Black lines are measured force curves, green curves are theoretical predictions. The 

radii of the bubbles were 88 µm (A) and 46 µm (B). In 1 mM NaCl, a surface potential of -35 

mV was taken in the theory, while in 500 mM NaCl the electrostatic double layer force was 

neglected. The arrows indicate the “disappearance” of the bubble from the cantilever, 

leading to a decrease of the force. The zero position of the piezo displacement was set at 

the jump-in. 

The theoretical prediction (Fig. 3A green line) was conducted by assuming that the 

microbubble on the cantilever interacted with a large air bubble of 10 mm. The large 

bubble served as a model for the entrapped air layer. In addition to the hydrodynamic 

force, the theory takes electrostatic double layer and van der Waals forces into account. 

For the Hamaker constant between the air bubble and air layer in water we used a value of 

3.7×10-20 J, based on Lifshitz theory.46 The van der Waals force including retardation effects 

has been calculated previously using a rigorous approach;28, 47 the difference between the 
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calculated force curves was very small. The surface potential of both air bubble and air 

layer was taken to be -35 mV according to a recent AFM study on air bubble interactions.29 

The theoretically predicted force curves agree with the experimental curve reasonably well 

until jump in. This agreement indicates that the electric double layer and hydrodynamic 

repulsion could effectively delay bubble coalescence. The above calculations assumed an 

interaction between the microbubble on the cantilever and an air layer of large radius on 

the substrate. 

When increasing the salt concentration to 500 mM aqueous NaCl solution we still observed 

a short range repulsive force. This repulsion tended to be stronger than in 1 mM NaCl (Fig. 

3B), even though in this the radius of the air bubble in 500 mM NaCl was smaller than that 

in 1 mM NaCl. Such a stabilizing effect of salt has been observed earlier. Craig et al. found 

that common electrolytes tend to reduce the rate of coalescence of bubbles.48, 49 It is not 

clear yet, how salt hinders bubble coalescence. It seems to be linked to the Hofmeister 

effect.50 It is not due to a change in the hydrodynamic boundary condition.51 Increasing the 

salt concentration reduces the solubility of the dissolved gas in water 52. It may thus affect 

the interactions and contribute to the force difference observed in Fig. 3A and 3B. 

With the “disappearance” of the bubble the force acting on the AFM cantilever decreased 

due to the reduced buoyancy of the now missing bubble. The force on the cantilever 

decreased by bF V gρ= . Here, V is the volume of the bubble, ρ = 998 kg/m3 is the density 

of water and g = 9.81 m/s2 is the acceleration of gravity. With a bubble radius of e.g. 46 µm 

(as in Fig. 3B) the volume of the bubble was 0.41 nL and Fb = 4.0 nN. This agrees with the 

experimental observation but is out of scale of Figure 3B. 

Hydrodynamic forces 

A clean fluid interface cannot support shear. To further test if the air layer in the 

soot-templated surface can support shear, we approached at higher speed to induce 

stronger hydrodynamic forces. At an approaching velocity of U = 30 µm/s indeed strong 

distance-dependent hydrodynamic forces were observed (Fig. 4). The force could be 

increased up to more than 10 nN before the bubble jumped into the layer. In the case 

shown in Figure 4 the loading force even increased to 32 nN without merging. Only when 

retracting the cantilever again, the bubble merged with the air layer, denoted at zero piezo 

displacement. This effect has been observed before for two interacting microbubbles; it is 

mainly due to the hydrodynamic suction effect.28, 33, 34 After the bubble had merged with 
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the air layer in the soot-templated surface, the force was decreased to -3.6 nN caused by 

the absence buoyancy. 

  

Figure 4. Force versus piezo displacement between an air bubble and soot-templated 

superamphiphobic layer (annealing temperature 600°C) in 500 mM NaCl aqueous solution 

at 30 µm/s approaching velocity. The black part of the curve was recorded during approach, 

the red part during retraction. The theoretical prediction was conducted by assuming that 

the microbubble on the cantilever interacted with a layer of air (bottom) of local radius 10 

mm, which served as a model for the entrapped air layer. Theoretical calculations (green 

curve) predict coalescence (dot with green arrow) slightly earlier than the measured data, 

which might be due to protrusions extending slight beyond the air-water interface. 

The fact that strong hydrodynamic forces were observed implies that at the air-water 

interface the hydrodynamic boundary condition is no-slip rather than no-shear. We 

attribute this boundary condition to trace amounts of contamination. Measurements of the 

terminal velocity of rising bubbles in ultraclean water showed that the no shear boundary 

condition is applicable.53, 54 Such a high degree of cleanliness is, however, impractical to 

achieve in our experiments. We suspect that hydrophobic substances adsorb to the super-

hydrophobic surface during preparation and storage. The substances are slowly and in tiny 

amounts released into the water of the measuring cell. Since the volume of water is small, 

the total surface area of the superhydrophobic surface is large, rinsing is impossible during 

an experiment, and the air-water interface is attractive for hydrophobic substances, trace 

amounts of contamination are practically difficult to avoid even when working extremely 
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clean. That a no-slip boundary condition describes hydrodynamic force measurements in 

water has been reported before.28  

Influence of surfactant 

To study the influence of surfactant we added 1 mM sodium dodecyl sulfate (SDS). The 

surface tension of the 1 mM SDS solution was measured to be 63 mN/m using a pendent 

drop goniometer. The presence of surfactant not only ensures an effective no-slip 

boundary condition,31 it also adds charge to the interfaces. Furthermore, it can destabilize 

the Cassie state due to the reduced surface tension. Soot-templated surfaces remain 

superhydrophobic even in aqueous surfactant solutions.  

Figure 5A shows a force curve recorded with velocity of U = 1 μm/s. No jump-in behavior 

was observed, indicating that the air bubble did not attach or merge with the layer. That 

the air bubble did not merge but was repelled and separated upon retraction without 

adhesion was confirmed by the video camera. Again, the air entrapped in the 

soot-templated surface acts like a large bubble; repulsive forces between two air bubbles in 

surfactant solution have been observed before.30, 31 Since SDS is an anionic surfactant it 

increases the surface charge of the air-water interfaces and leads to an electrostatic 

double-layer repulsion.  
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Figure 5. Interaction between an air bubble (R = 65 μm) and a soot-templated surface 

(annealed at 600°C) in 1 mM SDS aqueous solution when approaching with a velocity of 1 

μm/s (A) and 30 μm/s (B). For comparison also the interaction between two bubbles in 1 

mM SDS was measured at 1 µm/s (C) and 30 µm/s approaching velocity (D); one bubble 

adhered to the bottom of the measuring cell. Approaching curves are plotted in black, 

retracting curves in red. Theoretical fits are shown in green. The surface potential of the air 

bubble in 1 mM SDS was fitted to be -50 ± 5 mV. For the fits in A and B the second bubble 

was assumed to be large (R = 1 mm).  
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Notably, for the interaction with low velocity, considerable hysteresis between approach 

and retraction curves was observed (Fig. 5A). When replacing the soot-template surface by 

an air bubble attached to the bottom of the measuring cell, no hysteresis was observed 

between approach and retraction curves at low velocity U = 1 μm/s (Fig. 5C). Therefore, we 

attribute the hysteresis between approach and retraction to changes in the precise contact 

line of the air-water interface in the soot-templated surface. The air-water interface is 

pinned at asperities and the position of the contact line on the asperities can easily change. 

This effect of a sliding contact line is absent in the interaction of a bubble with the “free” 

surface of another bubble.  

At high velocities (Fig. 5B), the retraction curve showed a wavy shape. From Figure 5B we 

calculated the frequency of the waves to be around 30 Hz. For comparison, we measured 

the force between two air bubbles at 30 µm/s approaching velocity. Figure 5D shows that 

the retraction curve recorded between two air bubbles did not exhibit a wavy shape.  

To identify the origin of the waves observed on the soot-templated surface we compare the 

observed frequency of ≈30 Hz to the first vibration mode of the bubble. The Eigenfrequen-

cy of the bubble vibration can be estimated from an approximation of Lauterborn:55, 56 

max

1
1.83

P
R

ν
ρ
∆

=                 (4) 

Rmax is the distance of the largest, local extension of the bubble to its center during the 

vibration. ∆P = 2γ/R is the pressure across the air/water interface; R is the initial radius of 

the unperturbed bubble. For an estimation we assume that the amplitude of vibrations is 

much smaller than the bubble diameter and Rmax ≈ R. With Rmax ≈ R we obtain 

3 2

0.77
R

γν
ρ

=                  (5) 

With a bubble radius of R = 65 µm and γ = 63 mN/m we get a frequency ν = 11 kHz. Thus 

the 30 Hz are not related to an Eigenfrequency of the bubble. We believe that the wavy 

retraction force curve in Fig. 5B is caused by capillary waves of the air layer attached to the 

soot-templated surface. If we for an estimation insert the frequency of 30 Hz into Eq. (5) 

and calculate the effective radius of a bubble corresponding to the entrapped air layer, 

( )1 320.60R γ ν ρ= , we obtain a radius of curvature or R = 3.5 mm. Thus the dynamics of 

capillary vibrations corresponds to that of a macroscopic bubble.  
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Interaction between a large air bubble and a soot-templated layer 

To measure the force between a macroscopic air bubble and a soot-templated surface the 

bubble, formed at the end of a glass capillary, was lowered towards the soot-templated 

surface (red lines in Fig. 6). The lowering was stopped at a position where the bubble 

should have contacted the soot-templated surface. Then the position of the capillary was 

kept constant for 5.3 s. Finally, the capillary was retracted again. The relative position of the 

capillary and the force was recorded.  

When lowering the bubble towards the soot-template surface first a weak repulsion of 33 

µN was observed (Fig. 6 top, t≈-0.2 – 0 s). Then the bubble jumped into the soot-templated 

surface and merged with the entrapped air; here we set t = 0. For the next ≈0.3 s the signal 

is dominated by an exponentially decaying vibration with a frequency of ≈40 Hz. We 

attribute this vibrations to a capillary vibration of the air in the soot-templated surface or of 

the bimorph cantilever. After the vibrations had subsided a constant decrease of the force 

to -64 µN was recorded. This net negative force on the bimorph cantilever was caused by 

the additional buoyancy. The air added to the soot-templated surface caused a buoyancy 

equivalent to bF V gρ= . With a bubble radius of 1.2 mm the volume of the bubble 

attached to the soot-templated surface was 6.8 µL (after a small correction accounting for 

the air left in the capillary) leading to Fb = 67 µN, which agrees with the observed decrease 

in force. The force did not change when moving the capillary away from the surface, 

proving that no capillary bridge between the end of the capillary and the soot-templated 

layer had formed. The small vibrations at t = 5.5-6.0 s are due to the movement of the 

capillary which mechanically couples to the bimorph. 
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Figure 6. A macroscopic air bubble interacting with a soot-templated surface (annealed at 

900°C) in Milli-Q water (A) and in degassed water (B) as measured with the ITFDA. Bubble 

radius: 1.2 mm, approach/retract velocity: 1 mm/s. The red line shows the position of the 

glass capillary with the bubble. Black lines correspond to the force measured by the 

bimorph. At the bottom a sequence of fast speed camera images show the spreading of an 

air bubble on soot-templated surface in Milli-Q water recorded at a frame rate of 5000 fps. 
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The two air-water interfaces approaching each other represent hydrophobic surfaces. It has 

been speculated that the interaction of two hydrophobic surfaces is influenced by the 

concentration of dissolved gas. To find out whether the amount of dissolved air influences 

the interaction, experiments with degassed water were carried out (Fig. 6 bottom). Such 

experiments are difficult with small bubbles because the air gets dissolved, the bubbles will 

shrink and disappear during the time required for an experiment. Therefore, we used 1.2 

mm sized bubbles. To reduce the concentration of dissolved air Milli-Q water was boiled 

close to 100oC for 1 h and cooled down quickly to room temperature in an ice-water bath. 

Then the degassed water was used right away.  

After the initial weak repulsion the bubble jumped into contact with the soot-templated 

surface (Fig. 6 bottom). Then the bubble formed a capillary bridge rather than merging 

completely with the air layer. The apparent contact angle of the air-water interface with 

the soot-templated surface was 29°. The capillary bridge caused an attractive force. The 

maximal capillary force in vertical direction can be estimated by 2 coscF rπ γ β= , where r 

= 0.74 mm is the radius of the capillary bridge at its neck and β is the angle of the interface 

with a vertical line. With β = 11°and γ = 0.072 N/m we estimate a capillary force of 329 µN. 

This agrees with the observed decreases in force at t = 0 s and after the vibrations of 347 

µN. When the bubble was pulled back from the surface the capillary bridge broke and a flat 

air bubble with an apparent contact angle of 25° with respect to air remained on the 

substrate. 

We attribute the formation of a temporary capillary bridge in degassed water to the fact 

that the entrapped air layer was most likely thinner than in normal water. It was thinner 

because gas dissolved into the water. As a result protrusions of the soot-templated surface 

reached further out into the water and acted as pinning sites for the three phase contact 

line. The apparent advancing contact angle of the bubble was therefore 25° rather than 

close to zero. Thus, the interaction of bubbles with superhydrophobic surfaces depends on 

the amount of entrapped air.  

Interaction of small air bubbles with nanofilament surfaces 

When submerging nanofilament surfaces into water typically two types of wetting could be 

discriminated based on video microscopy (Fig. 7): A “clean” and homogeneous region and a 

region, which seemed to be under a large bubble but contained water drops. We measured 
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the interaction between air bubbles and the “clean” regions, which is most likely a nano-

filament region with entrapped air, i.e. in the Cassie state. 

When approaching small bubbles towards superhydrophobic nanofilament surfaces they 

experience a weak repulsive force and a jump-in (Fig. 7). Bubbles did, however, not 

“disappear” but stayed intact. They only shrank in size. For example the bubble investigated 

in Figure 7 decreased in radius from 57 µm to 54 µm after contact had established. Upon 

retraction a strong adhesive force had to be overcome, indicating the formation of a 

capillary bridge. The reason for the absence of merging of air may be the reduced thickness 

of the nanofilament surface and as a result the thinner air layer. In contrast to the 

soot-templated surface with a thickness of typically 30 µm, the nanofilament surface was 

only 4 ± 2 µm thick. Thus, merging and uptake of air from the bubble into the 

superhydrophobic surface is not a universal feature but depends on its specific architecture 

and on the contact time. 

Figure 7. Force-versus-piezo displacement 

curves for the interaction of a bubble (R = 57 

µm) with a nanofilament surface with 1 µm/s 

approaching velocity and in 1 mM NaCl 

recorded in the “clean” region. Experiments 

were carried out with the AFM bubble setup. 

The approaching part is plotted in black the 

retracting part in red. The inset shows the 

approaching part at higher resolution. The 

green curve in the inset is the theoretical 

prediction between an air bubble and an air 

layer. A light microscope image is shown in the 

middle. The schematic at the bottom shows 

water in the Cassie state on a nanofilament 

region (left) and air with water drops. We 

cannot discriminate weather the drops are also 

in the Cassie state (left drop) or in a mixed 

Cassie-Wenzel state (right drop). 

The response observed on nanofilament surfaces was qualitatively similar to the adhesion 

observed by Wang et al.22 In our case the apparent receding contact angle with water was, 
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however, larger than 150° and the surface displayed full superhydrophobicity while the 

rose petals used by Wang et al. showed a large contact angle hysteresis.  

Superhydrophobic micropillar arrays 

When submerging micropillar arrays three types of wetting could be observed (Fig. 8): (I) a 

large, continuous and thick layer of air with droplets of water inside, (II) a region where the 

pillars could clearly be seen, and (III) a pillar region with lower contrast. We identify regions 

II as being in the Wenzel state while regions III are in the Cassie state. This would explain 

the higher contrast in regions II as compared to region III. We also observed that the area II 

gradually expanded at the expense of area III. Region I did not change. Forces were 

measured on regions II and III. Region I looked like the area described as “under a large 

bubble but contained water drops” on the nanofilament surface. Region III appeared like 

the “clean” and homogeneous region. 

Figure 8. Video microscope image 

of an array of cylindrical 

micropillars immersed in 1 mM 

NaCl aqueous solution. Three 

different regions could be 

distinguished. We interpret these 

regions as indicated in the bottom 

schematic. Typical approaching 

force-versus-piezo displacement 

curves recorded with the AFM 

setup in II and III (approaching 

velocity of 1 µm/s) are shown at 

the top. The green curves are 

theoretical predictions between an 

air bubble and an air layer (regime 

III) and between an air bubble and 

a flat substrate (regime II, surface 

potential of the solid substrate was 

taken as -40 mV.33, 34 R is the radius of the respective bubble in this particular force curve.  
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The force curves recorded during approach with microbubbles in regions II and III looked 

similar. Both showed repulsive force barriers of ≈0.6 nN. The approach parts resembled the 

forces observed on soot-templated surfaces. However, the air bubbles showed different 

behavior during retraction when interacting with the surfaces of region II and region III, as 

directly observed from the optical microscope. In regions III (Cassie state) the bubble again 

“disappeared” and merged with the 10 µm thick air layer. Thus, the interaction between an 

air bubble and a micropillar array in the Cassie state can also be described as 

superaerophilic, just like the submerged soot-templated surface. In regions II (Wenzel 

state), however, the bubble jumped to the surface but remained on the surface as an intact 

bubble. It could afterwards be picked up easily with the cantilever again. Thus, in the 

Wenzel state, the superhydrophobic micropillars do not show superaerophilic properties.  

Decorated micropillars 

The results discussed in Figure 8 were obtained with cylindrical pillars with flat tops. When 

stabilizing the Cassie state by placing microspheres on top of the pillars only two types of 

regions were observed: I and III. Force curves measured on region III tended to show 

stronger forces but showed a similar shape as force curves recorded on cylindrical pillars. 

Typical threshold forces were ≈1.3 nN rather than ≈0.6 nN. The interaction between a 

bubble and region III was, however, qualitatively different. When a bubble came into 

contact with the decorated pillars the bubble attached to it (Fig. 9). The cantilever could be 

moved away while the bubble stayed on the surface. Then the bubble gradually decreased 

in size and eventually disappeared after 2-3 min. A comparable effect had been described 

by Change et al.57 They observed that on a roughened Teflon surface a large sessile bubble 

grows at the expense of a neighboring small bubble. This Ostwald type of ripening was 

attributed to a connection of the bubbles via “network-like pores in the superhydrophobic 

film which remain nonwetted and provide passage for gas flow between adhered bubbles.” 
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Figure 9. Top: Sequence of video microscope image of a bubble being placed by a cantilever 

onto decorated micropillars submerged in 1 mM NaCl aqueous solution. Within 170 s the 

bubble dissolves. Bottom: Schematic of a bubble attached to a superhydrophobic surface 

separated by a liquid lamella from the continuous air layer. 

The attachment and gradual shrinking represents another interaction of bubbles with 

superhydrophobic surfaces in the Cassie state. We speculate that the air from the bubble 

enters the continuous air layer in the superhydrophobic surface, possibly by diffusion 

through a liquid lamella (Fig. 9 bottom). The air does not dissolve into solution. Otherwise 

the air bubble should already dissolve when being attached to the cantilever. The longevity 

of the bubble on the cantilever proves that the aqueous solution is at almost 100% 

saturation with dissolved air. The relative concentration of dissolved air can be estimated 

with equation 16 of ref. 58. This equation describes the decreasing radius R of a spherical 

bubble in an undersaturated liquid:  

( )2 2
0

2
s i

n

DR R c c t
ρ

= − −               (6) 

Here, R0 is the initial bubble radius, D is the diffusion coefficient of gas molecules in the 

liquid, ρn is the number density of molecules in the gas phase, cs is the saturation 

concentration of dissolved molecules in the liquid, and ci is the real concentration of 

dissolved molecules in the liquid far away from the bubble. Both concentrations are in 
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molecules per m3. Eq. (6) is an approximation valid for times, for which a steady state 

concentration profile has developed around the bubble ( 2R Dtπ<< ). After one second 

and with a diffusion coefficient of D = 2.6×10-9 m2/s for air in water59, 60 bubbles should 

therefore be much smaller than R = 180 µm for Eq. (6) to hold. This condition was fulfilled 

in our case. 

The life time of a bubble t0 can be obtained by setting R = 0. If we further relate the gas 

pressure by Henry’s law to the saturation concentration, s H AP c k N= , assume an ideal gas, 

n BP k Tρ = , and replace s ic c−  with ( )1s i sc c c f− = −  we get 

( ) ( )
2 2
0 0

0 2 1 2 1
H

B s g

PR k Rt
Dk Tc f DR T f

= =
− −

           (7) 

The gas constant Rg = kBNA = 8.31 J/molK is the product of Boltzmann’s constant and the 

Avogardo number. f is the ratio of the bulk concentration of dissolved air to the 

concentration at saturation. P is the gas pressure of the gas in equilibrium with water. Eqs. 

(6) and (7) neglect the additional Laplace pressure in the bubble due to the surface tension 

of the liquid. This Laplace pressure leads to an overestimation of the lifetime of the order of 

20%.58  

With an effective Henry constant for air in water at room temperature of kH = 1117 

atmL/mol = 1.117×105 Nm/mol and a minimal observed lifetime of a bubble of 50 µm 

radius on the cantilever of >30 min we estimate that f ≥ 0.99. The shrinkage of the sessile 

air bubble on the decorated micropillars is thus not a dissolution into water. The typical 

time span still indicates a diffusion process through water as a rate limiting step. Therefore 

we suggest that between the sessile air bubble and the air layer a liquid lamella exist, as 

indicated in Fig. 9.  

Conclusions 

Bubbles interact in different ways with superhydrophobic surfaces depending on the 

specific structure of the surface and its wetting state. Phenomenologically interactions can 

be classified into  
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• Superaerophilic, characterized by zero apparent contact angle with respect to air, an 

immediate jump in after contact followed by complete merging. 

• Formation of a capillary bridge with a finite apparent contact angle. In this case the 

macroscopic contact line seems to be pinned at protrusions reaching out of the 

entrapped air layer.  

• Attachment, in which the bubble attaches to the superhydrophobic surface but largely 

retains its spherical integrity. 

Different wetting states need to be distinguished when submerging the different super-

hydrophobic surfaces. Wetting states include the Cassie state with different degrees of 

being filled with air (III in Fig. 8 bottom), the Wenzel state (II), and macroscopic flat air 

bubbles often including water droplets (I).  

The following picture emerges from measurements with microscopic and macroscopic 

bubbles:  

• On soot-templated surfaces the Cassie state is relatively stable. Bubbles interact with 

such surface in a similar way as with other bubbles: The approaching bubble merges 

with the entrapped air layer after overcoming hydrodynamic and electrostatic 

repulsion. The surfaces act perfectly aerophilic with zero apparent contact angle (with 

respect to air). Soot-templated surface are the most easy ones to be replenished with 

air by dispersed bubbles.  

• Fitting approaching force curves using a theoretical model based on the augmented 

Young-Laplace equation and Reynolds lubrication theory indicates that the repulsion 

between the bubble and the air cushion in the superhydrophobic surface is mainly from 

hydrodynamic and electrostatic (at low salinity conditions) interactions. The 

hydrodynamic boundary is no-slip. The repulsion increases when adding high salt, 

despite the fact that the electrostatic force should be reduced. We have no good 

explanation for this effect yet.  

Adding the anionic surfactant SDS leads to a highly stable and repellent interaction due 

to strong electrostatic and hydrodynamic repulsion. Surfactant prevents merging.  

• In undersatured water the thickness of the entrapped air layer decreases. This 

shrinkage reduces the aerophilicity and makes replenishing the layer with air more 

difficult.  

These experiments only give a rough overview over the rich phenomenology possible in the 

interaction between bubbles and superhydrophobic surfaces. One of the important next 
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steps is to relate these phenomena to the microscopic wetting phenomena on the nano- 

and microscale.  

Acknowledgements 

We thank G. Glaser, G. Schäfer and M. Wagner for technical support. Financial support 

from ERC grant SuPro (H.J.B.), COST1106 (D.V.), the Marie Curie fellowship 

660523-NoBios-ESR (N.E.), the Canadian Centre for Clean Coal/Carbon and Mineral 

Processing Technologies is gratefully acknowledged. H.Z., C.S., and X.C. acknowledge 
financial support from the Canada Foundation for Innovation and the Alberta Advanced 

Education & Technology Small Equipment Grants Program for the AFM, and the financial 

support from the Natural Sciences and Engineering Research Council of Canada for the 

research work. 

References 

1. Cassie, A. B. D.; Baxter, S. Large contact angles of plant and animal surfaces. Nature 
1945, 155, 21-22. 

2. Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 
28, 988-994. 

3. Watanabe, K.; Udagawa, H. Drag reduction of non-Newtonian fluids in a circular pipe 
with a highly water-repellent wall. AIChE J. 2001, 47, 256-262. 

4. Lee, C.; Choi, C. H.; Kim, C. J. Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 
2008, 101, 064501. 

5. McHale, G.; Newton, M. I.; Shirtcliffe, N. J. Immersed superhydrophobic surfaces: Gas 
exchange, slip and drag reduction properties. Soft Matter 2010, 6, 714-719. 

6. Rothstein, J. P. Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 2010, 42, 
89-109. 

7. Gogolides, E.; Ellinas, K.; Tserepi, A. Hierarchical micro and nano structured, 
hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in 
microfluidics, microarrays and lab on chip microsystems. Microelectronic Engineering 
2015, 132, 135-155. 

8. Srinivasan, S.; Kleingartner, J. A.; Gilbert, J. B.; Cohen, R. E.; Milne, A. J. B.; McKinley, G. 
H. Sustainable drag reduction in turbulent Taylor-Couette flows by depositing 
sprayable superhydrophobic surfaces Phys. Rev. Lett. 2015, 114, 014501. 



 
 

26 
 

9. Paven, M.; Papadopoulos, P.; Schöttler, S.; Deng, X.; Mailänder, V.; Vollmer, D.; Butt, 
H.-J. Super liquid-repellent gas membranes for carbon dioxide capture and heart-lung 
machines. Nature Commun. 2013, 4, 2512. 

10. Vakarelski, I. U.; Marston, J. O.; Chan, D. Y. C.; Thoroddsen, S. T. Drag reduction by 
Leidenfrost vapor layers. Phys. Rev. Lett. 2011, 106, 214501. 

11. van Gils, D. P. M.; Guzman, D. N.; Sun, C.; Lohse, D. The importance of bubble 
deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow. J. Fluid 
Mech. 2013, 722, 317-347. 

12. Bobji, M. S.; Kumar, S. V.; Asthana, A.; Govardhan, R. N. Underwater Sustainability of 
the "Cassie" State of Wetting. Langmuir 2009, 25, 12120-12126. 

13. Lei, L.; Li, H.; Shi, J.; Chen, Y. Diffraction patterns of a water-submerged 
superhydrophobic grating under pressure. Langmuir 2010, 26, 3666-3669. 

14. Sakai, M.; Nakajima, A.; Fujishima, A. Removing an air Layer from a superhydrophobic 
surface in flowing water. Chem. Lett. 2010, 39, 482-484. 

15. Hemeda, A. A.; Gad-el-Hak, M.; Tafreshi, H. V. Effects of hierarchical features on 
longevity of submerged superhydrophobic surfaces with parallel grooves. Phys. Fluids 
2014, 26, 082103. 

16. Carlborg, C. F.; Stemme, G.; van der Wijngaart, W. Microchannels with substantial 
friction reduction at large pressure and large flow. IEEE 22nd International Conference 
on Micro Electro Mechanical Systems 2009, 39-42. 

17. Stephani, K. A.; Goldstein, D. B. An examination of trapped bubbles for viscous drag 
reduction on submerged surfaces. J. Fluids Engineering ASME 2010, 132, 041303. 

18. Lee, C.; Kim, C.-J. Underwater restoration and retention of gases on superhydrophobic 
surfaces for drag reduction. Phys. Rev. Lett. 2011, 106, 014502. 

19. Xue, Y.; Chu, S.; Lv, P.; Duan, H. Importance of Hierarchical Structures in Wetting 
Stability on Submersed Superhydrophobic Surfaces. Langmuir 2012, 28, 9440-9450. 

20. Wang, J.; Zheng, Y.; Nie, F.-Q.; Zhai, J.; Jiang, L. Air bubble bursting effect of Lotus leaf. 
Langmuir 2009, 25, 14129-14134. 

21. Krasowska, M.; Ferrari, M.; Liggieri, L.; Malysa, K. Influence of n-hexanol and n-octanol 
on wetting properties and air entrapment at superhydrophobic surfaces. Phys. Chem. 
Chem. Phys. 2011, 13, 9452-9457. 

22. Wang, J.; Yang, Q.; Wang, M.; Wang, C.; Jiang, L. Rose petals with a novel and steady air 
bubble pinning effect in aqueous media. Soft Matter 2012, 8, 2261-2266. 

23. Butt, H.-J. A technique for measuring the force between a colloidal particle in water 
and a bubble. J. Colloid Interface Sci. 1994, 166, 109-117. 



 
 

27 
 

24. Ducker, W. A.; Xu, Z.; Israelachvili, J. N. Measurement of hydrophobic and DLVO forces 
in bubble-surface interactions in aqueous solutions. Langmuir 1994, 10, 3279-3289. 

25. Fielden, M. L.; Hayes, R. A.; Ralston, J. Surface and capillary forces affecting air 
bubble-particle interactions in aqueous electrolyte. Langmuir 1996, 12, 3721-3727. 

26. Preuss, M.; Butt, H.-J. Direct measurement of particle-bubble interactions in aqueous 
electrolyte: Dependence on surfactant. Langmuir 1998, 14, 3164-3174. 

27. Pushkarova, R. A.; Horn, R. G. Bubble-solid interactions in water and electrolyte 
solutions. Langmuir 2008, 24, 8726-8734. 

28. Vakarelski, I. U.; Manica, R.; Tang, X.; O'Shea, S. J.; Stevens, G. W.; Grieser, F.; 
Dagastine, R. R.; Chan, D. Y. C. Dynamic interactions between microbubbles in water. 
Proc. Natl. Acad. Sci. USA 2010, 107, 11177-11182. 

29. Tabor, R. F.; Chan, D. Y. C.; Grieser, F.; Dagastine, R. R. Anomalous stability of carbon 
dioxide in pH-controlled bubble coalescence. Angew. Chem. Int. Ed. 2011, 50, 
3454-3456. 

30. Balasuriya, T. S.; Dagastine, R. R. Interaction Forces between Bubbles in the Presence of 
Novel Responsive Peptide Surfactants. Langmuir 2012, 28, 17230-17237. 

31. Manor, O.; Vakarelski, I. U.; Tang, X. S.; O'Shea, S. J.; Stevens, G. W.; Grieser, F.; 
Dagastine, R. R.; Chan, D. Y. C. Hydrodynamic boundary conditions and dynamic forces 
between bubbles and surfaces. Phys. Rev. Lett. 2008, 101, 024501. 

32. Tabor, R. F.; Manica, R.; Chan, D. Y. C.; Grieser, F.; Dagastine, R. R. Repulsive van der 
Waals Forces in Soft Matter: Why Bubbles Do Not Stick to Walls. Phys. Rev. Lett. 2011, 
106, 064501. 

33. Shi, C.; Chan, D. Y. C.; Liu, Q.; Zeng, H. Probing the hydrophobic interaction between air 
bubbles and partially hydrophobic surfaces using atomic force microscopy. J. Phys. 
Chem. C 2014, 118, 25000-25008. 

34. Shi, C.; Cui, X.; Xie, L.; Liu, Q.; Chan, D. Y. C.; Israelachvili, J. N.; Zeng, H. Measuring 
forces and spatiotemporal evolution of thin water films between an air bubble and 
solid surfaces of different hydrophobicity. ACS Nano 2015, 9, 95-104. 

35. Butt, H.-J.; Vollmer, D.; Papadopoulos, P. Super liquid-repellent layers: The smaller the 
better. Adv. Colloid Interface Sci. 2015, doi:10.1016/j.cis.2014.06.002. 

36. Deng, X.; Mammen, L.; Butt, H.-J.; Vollmer, D. Candle soot as a template for a 
transparent robust superamphiphobic coating. Science 2012, 335, 67-70. 

37. Zhang, J. P.; Seeger, S. Superoleophobic coatings with ultralow sliding angles based on 
silicone nanofilaments. Angew. Chem. Int. Ed. 2011, 50, 6652-6656. 

38. Papadopoulos, P.; Mammen, L.; Deng, X.; Vollmer, D.; Butt, H. J. How 
superhydrophobicity breaks down. Proc. Natl. Acad. Sci. USA 2013, 110, 3254-3258. 



 
 

28 
 

39. Butt, H.-J.; Roismann, I.; Brinkmann, M.; Papadopoulos, P.; Vollmer, D.; Semprebon, C. 
Characterization of super liquid-repellent surfaces. Curr. Op. Colloid Interfaces Sci. 
2014, 19, 343-354. 

40. Mammen, L.; Bley, K.; Papadopoulos, P.; Schellenberger, F.; Encinas, N.; Butt, H.-J.; 
Weiss, C. K.; Vollmer, D. Functional superhydrophobic surfaces made of Janus 
micropillars. Soft Matter 2015, 11, 506-515. 

41. Hutter, J. L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. 
Instrum. 1993, 64, 1868-1873. 

42. Chan, D. Y. C.; Dagastine, R. R.; White, L. R. Forces between a rigid probe particle and a 
liquid interface. I. The repulsive case. J. Colloid Interface Sci. 2001, 236, 141-154. 

43. Chan, D. Y. C.; Klaseboer, E.; Manica, R. Theory of non-equilibrium force measurements 
involving deformable drops and bubbles. Adv. Colloid Interface Sci. 2011, 165, 70-90. 

44. Schäffel, D.; Yordanov, S.; Schmelzeisen, M.; Yamamoto, T.; Kappl, M.; Koynov, K.; 
Dünweg, B.; Butt, H.-J. Hydrodynamic boundary condition of water on hydrophilic and 
hydrophobic surfaces. Phys. Rev. E 2013, 87, 051001. 

45. Wang, L.; Sharp, D.; Masliyah, J.; Xu, Z. Measurement of Interactions between Solid 
Particles, Liquid Droplets, and/or Gas Bubbles in a Liquid using an Integrated Thin Film 
Drainage Apparatus. Langmuir 2013, 29, 3594-3603. 

46. Israelachvili, J. N. Intermolecular and Surface Forces; 3rd ed.; Elsevier: Amsterdam, 
2011. p 674. 

47. Tabor, R. F.; Wu, C.; Lockie, H.; Manica, R.; Chan, D. Y. C.; Grieser, F.; Dagastine, R. R. 
Homo- and hetero-interactions between air bubbles and oil droplets measured by 
atomic force microscopy. Soft Matter 2011, 7, 8977-8983. 

48. Craig, V. S. J.; Ninham, B. W.; Pashley, R. M. The effect of electrolytes on bubble 
coalescence in water. J. Phys. Chem. 1993, 97, 10192-10197. 

49. Henry, C. L.; Dalton, C. N.; Scruton, L.; Craig, V. S. J. Ion-specific coalescence of bubbles 
in mixed electrolyte solutions. J. Phys. Chem. C 2007, 111, 1015-1023. 

50. Henry, C. L.; Craig, V. S. J. The Link between Ion Specific Bubble Coalescence and 
Hofmeister Effects Is the Partitioning of Ions within the Interface. Langmuir 2010, 26, 
6478-6483. 

51. Henry, C. L.; Parkinson, L.; Ralston, J. R.; Craig, V. S. J. A mobile gas-water interface in 
electrolyte solutions. J. Phys. Chem. C 2008, 112, 15094-15097. 

52. Weiss, R. F. The solubility of nitrogen, oxygen and argon in water and seawater. 
Deep-Sea Research 1970, 17, 721-735. 



 
 

29 
 

53. Kelsall, G. H.; Tang, S.; Smith, A. L.; Yurdakul, S. Measurement of rise and 
electrophoretic velocity of gas bubbles. J. Chem. Soc., Faraday Trans. 1996, 92, 
3879-3885. 

54. Parkinson, L.; Sedev, R.; Fornasiero, D.; Ralston, J. The terminal rise velocity of 10-100 
µm diameter bubbles in water. J. Colloid Interface Sci. 2008, 322, 168-172. 

55. Lauterborn, W. Eigenfrequenzen von Gasblasen in Flüssigkeiten Acustica 1968, 20, 14. 

56. Hund, M. Zur näherungsweisen Berechnung der Eigenfrequenzen von Gasblasen in 
Flüssigkeiten/Approximate calculation of Eigenfrequency of gas bubbles in liquids. 
Acustica 1969, 21, 54-56. 

57. Chang, F.-M.; Sheng, Y.-J.; Cheng, S.-L.; Tsao, H.-K. Tiny bubble removal by gas flow 
through porous superhydrophobic surfaces: Ostwald ripening. Appl. Phys. Lett. 2008, 
92 (26), 264102. 

58. Epstein, P. S.; Plesset, M. S. On the stability of gas bubbles in liquid-gas solutions. J. 
Chem. Phys. 1950, 18, 1505-1509. 

59. Sun, W.-Y.; Kim, C. J. The role of dissoved gas in longevity of Cassie states for immersed 
superhydrophobic surfaces. 26th IEEE International Conference on MEMS 2013, 
397-400. 

60. Wilke, C. R.; Lee, C. Y. Estimation of diffusion coefficients for gases and vapors Ind. Eng. 
Chem. 1955, 47, 1253-1257. 

 

 


	Abstract
	Introduction
	Materials and Methods
	Superhydrophobic surfaces
	AFM bubble probe setup
	Theoretical modelling of AFM data
	Macroscopic force measurements

	Results and discussion
	Interaction of small air bubbles with soot-templated surfaces
	Hydrodynamic forces
	Influence of surfactant
	Interaction between a large air bubble and a soot-templated layer
	Interaction of small air bubbles with nanofilament surfaces
	Superhydrophobic micropillar arrays
	Decorated micropillars

	Conclusions
	Acknowledgements
	References

